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A fermionic perturbation theory is developed for the statistical mechanics of the 
nonlinear Schr6dinger model. The theory is based on an interacting-fermion pic- 
ture of the Bethe wave function. The inner product of the Bethe wave function is 
explicitly evaluated, and a simple graphical representation of it is given. The 
basic equations obtained for the free energy agree with those of Yang and Yang. 
In particular, the present theory gives a clear-cut meaning to the ~ function of 
Yang and Yang: It represents a fermion energy at finite temperatures. 
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1. I N T R O D U C T I O N  

The Bethe ansatz (BA) formulation of the thermodynamics of soluble 
models in one dimension was initiated by Yang and Yang (1) in the non- 
linear Schr6dinger (NLS) model described by the Hamiltonian, 

H = f dxE0xO*<~ + cr162162 (1.1) 

where r is a quantized boson field and c is a repulsive coupling con- 
stant. Since then, the BA method has been successfully generalized and 
applied to a variety of physical systems: the Heisenberg Ising ring, (2) the 
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Kondo problem, (3) the massive Thirring = sine-Gordon model, (4'5) and the 
Anderson model. (6) In spite of its great success, however, the BA formalism 
has involved certain ambiguities common to all the soluble models. These 
have to do with the two-body scattering phase shift and the physical mean- 
ing of the e function introduced by Yang and Yang. These ambiguities, 
together with the so-called exotic excitations in some more intricate BA 
systems, have prevented people from reaching a more profound 
understanding of the soluble models in one dimension. As for the exotic 
excitations, it has been pointed out that they are mathematical artifacts 
rather than physical objects, (5) and a new thermodynamical formalism 
which does not invoke these excitations has recently been presented. (v) 

In this paper I shall consider a fermionic perturbation theory for the 
statistical mechanics of the NLS model, thereby removing the ambiguities 
in the BA formalism. In particular, it is clear in the new theory that the e 
function represents the fermion energy at finite temperatures. 

It was Thacker (81 who first performed a perturbative calculation of the 
statistical mechanics of the NLS model. Thacker's argument, however, is 
based on a picture of interacting bosons in which the wave operator 
unitarity is violated, and therefore it is mathematically questionable-- 
indeed, Thacker's formalism does not agree with the BA formalism. 
Nevertheless, as far as thermodynamic properties are concerned, Thacker's 
results agree with those of the BA theory. Although the new approach is 
also perturbative, it is now based on a picture of interacting fermions where 
the wave operator unitarity is guaranteed. As a result, this new approach 
does not contain any ambiguities and the resulting formalism agrees with 
the BA formalism. 

I have organized the present paper as follows. In the next section, the 
BA formalism and the bosonic perturbation theory are briefly reviewed and 
some ambiguities in these theories are pointed out. In Section 3, the Bethe 
wave function is put in a form of interacting fermions. Thus we examine a 
fermionic perturbation theory from c =  Go instead of the bosonic pertur- 
bation theory from c = 0. In this section, graphical rules are also given for 
calculating inner products of the Bethe wave function. In Section 4, inner 
products are explicitly evaluated. In Section 5, a simple graphical represen- 
tation is first introduced for the evaluated inner products. Then, the virial 
expansion of the free energy is graphically manipulated to reproduce the 
BA formalism results. As will become clear below, although our fermionic 
wave function is correct as far as physical quantities are concerned, it is not 
the precise energy eigenstate of the Hamiltonian. Some remarks at the level 
of the Hamiltonian related to this latter point will be given in the last sec- 
tion. 
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2. R E V I E W  OF P R E V I O U S  T H E O R I E S  

Lieb and Liniger ~9~ first introduced the NLS model (1.1) as a theory of 
bosons interacting via a two-body g-function potential of strength 2c. Let 
us start with writing their Bethe wave function in a form suitable for the 
second quantized Hamiltonian (1.1): 

IO(k~"'ku)>= f dx~" ' f  dxxexp (i ~ kjxj) 
", j = l  

• [I  
i < j  

• 10> (2.1) 

where 0 is a step function and S~ represents the two-body S matrix for 
bosons with momenta k~ and ky. When we write the Bethe wave function as 
(2.1), we have introduced a convention that 60--c5/2, or formally 
0(0) = 1/2. The two-body S matrix S~j= e ~a~k~-kj) with the two-body scatter- 
ing phase shift 

6(k) = 2 t an -  ~(c/k) (2.2) 

In the BA thermodynamics, the following integral equation for the 
quantity e(k) plays a central role(~: 

~(k) = -#  + k z + fl- ~ ~ dq aS(k- q). ln[1 + e -~(q)] 
J 

(2.3) 

where /~ and fl, respectively, represent the chemical potential and the 
inverse temperature (Boltzmann constant = 1), and 

3"(k) = - 2  tan -1(k/c) (2.4) 

In terms of e(k), the free energy of the system is written as 

g=#No-L f i  -I J ~ ~-~' ln[1 + e  (2.5) 

where No and L, respectively, represent the total particle number and the 
system size. The energy AE required for exciting n particles from {k~} to 
{k'~} (c~ .= 1, 2,..., n) at thermal equilibrium can also be expressed in terms 
of e(k) as 

AE= ~ [e(k•)-- e(k.)] (2.6) 
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Equations (2.5) and (2.6) demonstrate a parallelism between the NLS 
model and free fermions having a one-particle energy e(k) measured from 
the chemical potential. 

An ambiguity in the above BA formalism is that the quantity 5 
appearing in (2.3) is not equal to the two-body phase shift 6. In the existing 
BA literature, to the author's knowledge, the question of why J instead of 
and what J means has not been addressed even at the level of a plausibility 
argument. This ambiguity originates in imposing periodic boundary con- 
ditions on the Bethe wave function (2.1), 

kL = 2rclk + ~ 6(k - k') (2 .7 )  
k'  

where Ik is an integer. In the BA formalism, (2.7) is replaced by 

kL = 2n7~ + y, •(k - k') (2 .8)  
k'  

where now 

7 k = integer, if N =  odd 

Ik + 1 = integer, if N = even 
(2.9) 

The replacement of (2.7) by (2.8) is based on the identity (14) 

b(k) = r~ sgn(k) + ~'(k) (2.t0) 

where sgn(k) = 1 if k > 0, and - 1 if k < 0. Now a subtle difference between 
(2.7) and (2.8) is that in differentiating these equations with respect to k, 
there arises a 6 function term from b(k) but not from 3"(k). This difference 
is physically significant; the use of (2.7) instead of (2.8) leads to a wrong 
theory for the statistical mechanics. 

In short, the BA formalism is not clear in two points: First, it is not 
clear why one should use 3" instead of ~. Second, the physical meaning of 
the important quantity e(k) is not quite clear. The main purpose of the 
present paper is to clarify these points, and give a clear-cut physical mean- 
ing to e(k). 

Next we briefly review the bosonic perturbation theory of Thacker. 
Both Thacker's and our perturbation theories are based on the virial 
expansion of the free energy: 

F-=llNo--fl  -~ ~ 2N[TrN e-~H] . . . . .  
N = I  

(2.11) 
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where 2 = ea~'= fugacity (or absolute activity), and [-" '  ]~o,n means to take 
contributions from connected graphs in a graphical expansion of the trace 
of the Boltzmann factor e -all. The quantity TrN e-al l  is transformed as 
follows(8'm'u): First write 

TrNe-flH = fc dE fie ~ i  e TrNG(E) 

f ~  dE = ~-~i~i e r  (2.12) 

where G(E) = ( E -  H) ~ = resolvent operator, and the contour C encloses 
all the poles of G(E). The second expression in (2.12) is obtained by noting 
that the poles of G(E) are only on the positive energy axis for the repulsive 
interaction c > 0. Here the limit t/--+ 0 is understood to be taken after the 
thermodynamic limit. Next we expand G in terms of the free resolvent 
operator Go = ( E -  Ho) -1 as 

G = Go + Go VGo + "'" - f2Go (2.13) 

where V=the  interaction Hamiltonian, and f2 = Y ~  0 (Go V) n. It is con- 
venient to introduce an operator transition matrix T by s = 1 + Go T. It is 
easy to show that T =  V+ TG o V and the operator identity 

T -  T t = r(Go - G*o) T. (2.14) 

With the use of s 1 + Go T and (2.14), one can show that the following 
holds inside the trace operator: 

G ~ - G = (Gg - Go) f2tf2 = 2~zi6(E- Ho) f2*f2 

Substituting (2.12) and (2.15) into (2.11) gives 

(2.15) 

with 

F = t ~ N o _ L f i  -1NL= 1 )~Nfdkl~-g " " -/--e0~dk'v2rc ~o~ l im.~o limk'~k W N N !  

(2.16) 

1 
W j v = ~  (k'{ Q*(c% + iq) Q(ook + iq) [k ) . . . .  (2.17) 

where co~ = ZN= i k 2 and I k ) =  ] k l k 2 " " k N ) .  Note that .(2(o))= U(0, -oo) ,  
the M611er wave operator, and therefore the wave function s [k) is 
obtained by an analytic continuation in the complex energy plane of the 
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Bethe wave function (2.1). Thus the main  task is to calculate the inner 
p roduc t  WN in (2.17). The two limits in (2.16) have been introduced for 
later use. 

In the bosonic per turbat ion theory of Thacker,  the interaction 
Hamil tonian  V is the second term on the right of (1.1) and the pertur- 
bat ion expansion is a round  c = 0 .  The obtained basic equations, 
corresponding to (2.3) and (2.5) in the BA formalism, are/8) 

~(k) = - #  + k 2 - ~ - '  f dq acS(k~q_~__2- I n [ l  - e -~ (q ) ]  
2~ 2k d 

(2.18) 

and 

F=#No+Lf l  l I2d -~k ln [1 -e  ~ k ) ]  (2.19) 

It is easily seen that  ~ ( k ) ~  e(k), but  both  the bosonic  per turbat ion theory 
and the BA formalism give the same free energy. This agreement  in the free 
energy, however, does not  necessarily mean  that  these theories are two 
equivalent but  different ways of approaching  the NLS  model. Rather,  here 
is a fact which is unfavorable to the bosonic  per turbat ion theory. We note 
a well-known proper ty  of the Bethe wave function (2.1) that  the wave 
function identically vanishes if any two m omen ta  coincide. In the inner 
p roduc t  (2.17), this proper ty  appears as a violation of  the wave opera tor  
unitarity. That  is, for N =  2, for example, 3 

O= <kkL UtU Ikk) ~ <kkl kk)  (2.20) 

This means that  c = 0 is a singular point  and one has no reason to expect 
that  the per turbat ion calculation a round  this point  gives a correct answer. 

Our  arguments  in the remaining sections are also based on the virial 
expansion of the free energy, (2.16) and (2.17). A main  difference between 
Thacker ' s  approach  and ours is that  the latter is the per turbat ion 
calculation a round  c--- oe. Since the model  at c = o% impenetrable bosons, 
is equivalent to free fermions, (12) our  approach  is in effect a fermonic per- 

3 The reader should not confuse the perturbation theory with the Bethe ansatz theory. In the 
latter, by imposing periodic boundary conditions, we consider an O(L -1) shift of the 
momentum k. On the other hand, in the perturbation theory, we work on the unperturbed 
momentum space k = (2n/L)x integer instead of imposing periodic boundary conditions. 
Moreover, it was shown that the unperturbed momentum labels are not changed by interac- 
tions and become momentum labels of the Bethe wave function [H. B. Thacker, Phys. Rev. 
D 11:838 (1975); 14:3508 (1976)]. Thus equation (2.20) precisely describes the violation of 
wave operator unitarity in the bosonic perturbation theory. 
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turbation theory. A merit of the new approach is that it guarantees the 
wave operator unitarity. As we will see below, this new approach removes 
the ambiguities in the BA formalism, and thus we can reach a more 
profound understanding of the statistical mechanics of the NLS model. 

3. P E R T U R B A T I O N  T H E O R Y  F R O M  c =  oo 

We start with rewriting the Bethe wave function as follows: Notice the 
identify (2.10), and define a new S matrix by 

Si: = eSa~ = - Sij (3.1) 

The Bethe wave function (2.1) is written in terms of S:/as 

I ~ r  i j ~ l k j X j  

x I] [O(x,-x/)+S:/O(x:-xi)] 
i < j 

x I~ sgn(x,--x:)O*(xl)'''~*(XN)10) (3.2) 
i < i 

Here we introduce a fermi field ~0(x) through the Jordan-Wigner transfor- 
mation: 

~o(x)=exp (irc ; ~ 0"0 dt) O~(x) (3.3) 

It is a straightforward calculation to see that the field operator ~0(x) 
actually obeys the fermionic anticommutation relations, and that 
~b*(x) 10 )=  (p*(x)10), and for N>~2 

H s g n ( x , -  x:)(J*(xl)'"(~*(XN) 10) = ~o*(xl).." (pt(xN) ]0) (3.4) 
i<j 

Substituting (3.4) into (3.2) gives 

,O(kl""kN))=fdxl""fdXNexp(i~ kjx:) 
/= 1 

X H [ 1 - ~ o - O ( x j - - X i ) ]  ~9?(Xl)' ' '~O~'(XN)tO) ( 3 . 5 )  
i<j 

where we have introduced a transition matrix {u by S0 = 1 +'~o. Note that 
for c =  Go, 3"0=0 and Se/= 1 [cf. (2.4)], and hence (3.5) describes N free 

822:'40/1-2-20 
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fermions. In general, (3.5) describes N fermions interacting via the two- 
body S matrix, S0. The quantity G 0 is then regarded as the two-body phase 
shift. The fermionic representation of the Bethe wave function is par- 
ticularly suitable for the virial expansion of the free energy, because the 
wave operator unitarity is clearly guaranteed in the fermionic treatment. 

A remark which should be made before we proceed further is that 
(3.5) is not a precise rewriting of the Bethe wave function (2.1). The dif- 
ference between (2.1) and (3.5) is in the wave amplitude when any two par- 
ticles collide. This point and related questions will be discussed in the last 
section. Here we simply note that such a difference in the wave function 
does not bring about any differences in calculating physical quantities. 

We now consider the inner products of the wave function (3.5). A 
straightforward calculation gives the following expression for WN in (2.17): 

wN =• Z 

[" 1 xexp i ~ (k i - k ) ) x J  ~(R;Xl-"XN) . . . .  (3.6) 
j = l  

where S u is the permutation group for integers 1, 2 ..... N, P(R)  is 1 or - 1 
according to whether the permutation R is even or odd, and 

~ ( R ; x I " ' ' X N )  = H [ l+goO(x i - - x i ) ]  
(i<J)~eN 

x l-~ [1 + f~mO(Xe-~m--XR-~,) ] (3.7) 
(l<m)eeN 

where e N - { ( i , j ) ]  1 < ~ i < j ~ N } .  The equation (3.7) can be simplified as 
follows. Look at an integer pair i < j. For a given permutation R, integers 
l < m which go to integers i and j under the permutation R -1 are uniquely 
determined besides the possibilities: ( i ) R - l r n - = j  and R l l = i  or 
(ii) R l m = i  and R x/=j .  For case (i), l = R i ,  m = R j ,  and therefore 
Ri < Rj, and the i < j pair contribution in (3.7), C~, is 

C R = [ 1 + faO(xj - xi)] [ 1 + ~*~,RjO(xj -- X,)] 

= 1 + (~u + ~*,.Rj + ~* , ,R j )  O(x j -  x,) (3.8a) 

For the case (ii), on the other hand, l=Rj ,  m = R i ,  and therefore Rj<Ri ,  
and the i <  j pair contribution becomes 

R __ ~i jO(x  j ~Rj, R iO(x  i __ C 0 - [1 + - x ~ ) ] [ l +  x j ) ]  

= 1 + ~uO(xi-  x~) + ~*i, mO(x~- xi) (3.8b) 
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The equations (3.8a) and (3.8b) can be put together as 

with 

R _ _  R Co-1  + ~  

C~=~('?O.+'?*,,Rj+'?O.'?*,,Rj) O(x/--X~), if R~<R] 
(~jO(x/-x~)+~*j,R~O(x~-xj), if Rj<R~ 

(3.9) 

(3.1o) 

From (3.6), (3.7), and (3.9) the inner product becomes 

WN= ~ ~' D(R; G; k', k) 
R E S N  G ~ N  

(3.11) 

where the second sum ~2' is over G such that all the N fermions are connec- 
ted either statistically or dynamically, and 

1 f ; D(R;G;k',k)=-~P(R) dx~.., d.)( N 

x e x p l i ~  (k/-k'Rj)xjl l~ c~ ~ (3.12) 
.]= 1 i< . j~  G 

R is a step function, the following graphical In light of the fact that ~ 
representation is conjectured for the quantity D(R; G; k', k): 

(a) Draw N fermion lines with momenta k~, k2,..., kN flowing in from 
the bottom of the graph and k'el, k'e2,..., k'RN flowing out from the top. 

(b) For each pair i<j~G, draw a phonon line connecting the fer- 
mion lines which are labeled at the bottom by ki and kj. 
Rules for evaluating the above graph are as follows: 

(i) To each phonon assign a momentum such that at each vertex, 
momentum conservation holds. Here it is understood that the momentum 
flows from bottom to top and left to right in the graph. (3.13a) 

(ii) For a phonon of momentum q corresponding to the i< j  pair, 
assign a factor 

- i  
('?ij + "?*i, Rj + ~i/?*i.Rj) q__ i-----~ , if Ri < Rj 

F(R; i, j)  = (3.13b) 
- i  i 

fo if Rj < Ri 
q _ #l + ~I,R~ q +i~' 

where ~/ is an infinitesimal positive number. 
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(iii) The quantity D(R; G; k', k) is then given by 

[ f~-~fdq2 ' 1  D(R; G; k', k) = P(R) -~" H 
i < j e G  

F(R; i, j) (3.13c) 

where the ql, q2,-., integrations are over closed loops. 
The core of the proof for the above statement is to show that the 

quantity 

D0or~ = ~ l f  dxl.., f dx N exp [ i  /~= 1 (kj--ktRj)Xjl 

• [I O(xj-x,) [I O(x,-xm) (3.14) 
i < j c G  l < m ~ G '  

with the condition Ri < Rj for i < j e G and Rm < Rl for l < m ~ G', has the 
graphical representation (a) and (b) with a trivial change in the definition 
of F in (3.13b). This can be shown as follows. First note that the statement 
is trivial if there are no closed loops. Let us assume one closed loop, and 
look at a step function O(x~.-xt), t < s and write it as 

( - i  ).eiUC~'-~') (3.15) 

The equation (3.14) with O(x,-x,) in it replaced by e iq(x'-xt) has a 
graphical representation with k ~  replaced by k ~ s - q  and k~, by k ~  + q. 
Combining this graphical representation with the left-over factor in (3.15) 

f 
dq --i 
2~ q--- it 1 

we reach the statement for the case of one closed loop. An inductive proof 
for the general case of many closed loops is trivial from the above 
argument. 

The obtained graphical recipe for calculating the inner product WN is 
essentially the same as that in the bosonic perturbation theory. (8) By 
replacing the bosonic transition-matrix z U and the bosonic exchange 
interaction in the latter by the fermionic fo and the fermionic exchange 
interaction, one can get our graphical recipe. A note worth mentioning here 
is that our procedures in this section show how one can directly work on 
the Bethe wave function. 

In the following section, we shall explicitly evaluate the inner product 
W u. In light of the structural similarity between our graphical recipe and 
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that in the bosonic perturbation theory, one may except to follow 
Thacker's procedures for evaluating WN. However, a new reasoning shall 
be presented in the following section. 

4. INNER PRODUCTS 

Let us start with the simple cases N = 2 and 3, which will indicate how 
one should work for general N. For N =  2, we have only two graphs as 
shown in Fig. 1. Rules (3.13) give 

Fig. la = (-~12 + -~*,z, + f,2 f*,2,) ( i  _ y / i q )  (4.1a) 

--i  i ) (4.1b) 
Fig. l b = -  f l Z l _ 2 , _ # /  ~-~*,2,1_2,+#/ 

where and below we abbreviate k i - k j  as either i - j  or k 0. Noting fu = 
S a -  1, (2.4) and (3.1), we have 

lim tim Fig. la = 0, 
r l ~ O k ' ~ k  

W2, 2 ~-- lim lim Fig. la = -2A 12 (4.2a) 
k'---~krl~O 

and 

W2,~ - lim lim Fig. lb = lim lim Fig. lb = 2A 12 (4.2b) 
q ~ O k ' ~ k  k ' ~ k t l ~ O  

where 
2s 

Ay-k~.+c2 (4.3) 

I' 2' 2' I' 

2 

(a) (b) 

Fig. 1. Graphs for W2. 
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Note the wave operator unitarity 

W2,1 -~- W2, 2 = 2A 12 - 2A 12 = 0 (4.4) 

which is a cancellation between the singular-type graph Fig. la and the 
nonsingular-type graph Fig. lb, It is clear from (4.2) that in the 
l imq~01imk,~ ,  which is of thermodynamical interest [cf. (2.16)], only 
nonsingular-type graphs contribute. Since the two limits r/--. 0 and k ' ~  k 
commute for nonsingular-type graphs, one can get the quantity of ther- 
modynamical interest, 

W2,1 = lira lim W 2 = 2zj12 (4.5) 
q ~ O k ' ~ k  

by working either directly on the nonsingular graph or on the singular 
graph, thereby using the wave operator unitarity, (4.4). 

The N =  2 case examined in the above is a little bit special, and we 
next consider the N =  3 case to get an insight for general N. In this case, 
four graphs for a given permutation R are shown in Fig. 2. We write their 
contribution to W 3 as W3(R ). Let us first consider R1 =identify. Rules 
(3.13) give 

Y12,12 ~g'-I 3,13 
W3(R1)  = 

2 ' - 2 - - i ~  3 ' - 3 - # /  
~Z12,12 ](23,23 

1 - - 1 '  - -  i~13' - 3 - i~ 

Y13,13 Y23,23 + 
1 - 1 '  - -  itl 2 - 2 '  - ir 1 

d q  Y12 ~2 Y13 13 Y23 23 

+ f ~ ( q - - # / ) ( 1 - - - ] - ~ -  q-- - - '~)-~ ' - - -  3 - q - i t / ) 5  

! ! 
R, R 3 

2 3 

(4.6) 

(a) (b) (c) (d) 

Fig. 2. Graphs for W3(R ). Momentum labels in (b), (c), and (d) are the same as in (a). 
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where 

Y~Jm -- --i(~o" + ~*~, + ?U?*m') 

Noting f ~ j = S ~ - 1 ,  (2.4) and (3.1), we have 

W3, 3 ~ lim lim W3(R1) 
k ' ~ k ~ O  

( 1 - 2 ) -  (1'-2') (1 -  3 ) - ( 1 ' -  Y) 
=A12A13 2 ' - 2  3 ' - 3  

+ J12A23 
( 1 - 2 ) -  (1'-2') ( 2 - 3 ) - ( 2 ' -  3') 

1 - 1 '  3 ' - 3  

( 1 - 3 ) -  (1'-3') ( 2 - 3 ) - ( 2 ' - Y )  
~- Z~ 13 A23 1 - 1 '  2 - 2 '  (4.7) 

where on the right a limit k' --* k should be taken under the constraint k~ + 
k2 + k3 = k'l + k~ + k;,  i.e., momentum conservation. Similarly for R2; 
(123) ~ (132), rules (3.13) give 

W3(R2) Y12 13 YI3 12 YI2 13 

3 ' - 2 - - i t /  2 ' - - 3 - i t /  1 - 1 ' - - i t /  

( -- i?23 i'g *'3' 
x \2 ,  3 _ i t / q  2 ' - 3 + i t /  / 

1 '-~it/ 2 -- 3; --- it/ -t 2 - 3 ' + i t /  

+ f dq Y13,12 Y12,13 
27t q - it/1 - 1 ~-- q -  it/ 

( -- ~23 it*'3' ) 
x \2 ' - -3- -q-- i t~  t - 2 ' - - 3 - - q + i t /  (4.8) 

After performing a loop integration, one can divide the right-hand side of 
(4.8) into two parts; one with a singular factor ( 1 - 1 ' - i t / )  1 and one 
without. But in doing so, note a subtlety 

1 1 1 
q 

(1 -  1'-it/)(2-3') ( l -  1'--it/)(2'-3) ( 2 -  Y ) ( 2 ' -  3) 
(4.9) 

Repeating similar calculations for R3; (123) --, (321) and R4; (123) -~ (213), 
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we find that the sum of singular-type contributions W3,2, as (of course in 
the limk, ~ k lira, ~ 0) 

W3'2=-2AI2A13[ (1-2)-(1'-2')2'-2 ~ (1-3)-(1'-3'!]3,_3 

F ( 1 - 2 ! - - ( 1 ' - 2 ' )  ( 2 - 3 ) - ( 2 ' - 3 ' ) ]  
- -  2Z]12ZI23 1_ 1 - -  1 '  + 3 7 - - 3  

F ( 1 - 3 ! - ( _ I ' - Y )  ( 2 - 3 ) - ( 2 ' - 3 ' ) ]  (4.10) 
- -  2A13zJ23  [_ 1 - -  1 t q- 2 2 T  

Combining (4.7) and (4.10) gives 

W3, 2 -~- W3, 3 : --3(A12zJ13 q- z112A23 q- zJ13A23 ) (4.11) 

The left-over terms in the cases R2, R3, and R 4 and graphs from Rs; 
(123) ~ (231) and R6; (123) -~ (312) are all nonsingular. For these, the two 
limits k' ~ k  and t 1--*0 commute. After a long but straightforward 
calculation, we have the contribution 

W3,1-=lim lira W3=3(A~2313+A12323+AI3A23 ) (4.12) 
q ~ O k ' ~ k  

Let us put the above result for N =  3 in a more appealing form. First 
note that, since the final result (4.11) does not depend on the way of taking 
limit k'---, k as far as the total momentum is conserved, one can con- 
veniently choose a special limit to get the same result. For example, taking 
the limit k' =kl + 2q, k'2 =k2-q and k; = k  3 - q  with q--, 0 in (4.7) and 
(4.10) gives 

and 

W3, 3 = %112 A 13 (4.13a) 

W3, 2 = - 12A 12 313 - 3A 12 A 23 - -  3A 13 z~ 23 (4.13b) 

and (4.11) follows from (4.13). Next note that, since the three terms in 
(4.12) are equivalent to each other in the expression (2.16) for the free 
energy, we can effectively write (4.12) as 

W3,1 = 9A 2 (4.14) 

where A 2 is an abbreviation of, say, A~2A13. Similarly, (4.13) is written as 

W3, 2 = --18A 2, l/V3, 3 = 9A 2 (4.15) 
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With this simplified notation, the wave operator unitarity takes the form 

W3,1 ~ I4/3,2-~- W3,3 = ( 3 A -  3A)2= 0 (4.16) 

Notice a similar expression (4.4) for N =  2. 
Now we are ready to consider the case of general N. First suppose we 

have performed all loop integrations. Following the N =  3 case, we then 
classify all terms in W N into N groups. The first group is composed of 
purely nonsingular terms. Let WN, 1 denote the contribution of purely non- 
singular terms in the lim~,_klim,_+ 0. The second group is composed of 
those terms which have only one infrared phonon; hereafter a phonon is 
called infrared if its momentum vanishes in the limit k ' ~  k. In a similar 
manner as in WN, I, we define W~v,2. And so on. In the most singular terms 
which belong to the last group, all N -  1 phonons are infrared. In this way, 
we have N groups and their contributions, 

lim lim W N = WN, I + WN,2 + "'" + WN, N (4.17) 
k ' ~ k ~ l ~ O  

As a natural generalization of the above results for N =  2 and 3, it is now 
conjectured that, for i =  1, 2 ..... N 

W'N.i-~ N-- 1Ci-1( -- 1) i -  I (N~)  N-  l (4.18) 

and the wave operator unitarity takes the form 

N 
W,v,,= ( N A -  N A } N -  I =O (4.19) 

i--i  

The statement (4.18) can be proved by induction. For  N = 3 ,  (4.14) 
and (4.15) are nothing but (4.18). Now assume (4.18) with N replaced by 
N - 1 .  For N, we can explicitly show below that (4.18) is true for i =  2, 
3,..., N. Then the statement (4.18) for i =  1 follows from the wave operator 
unitarity. Here it is worth emphasizing that the wave operator unitarity is 
trivial in the present approach, because c = oo is not a singular point, Let 
us consider Wu, i ( i=  2, 3,..., N). We first divide N fermions into i groups 
such that intergroup interactions are denoted by i - 1  infrared phonons 
and intragroup interactions are nonsingular. To be specific, let Jfj, j =  1, 
2,..., i denote the number of particles in the j t h  group. Therefore, 

N = X I  + X 2 +  . . .  q_Xi (4.20) 

Note that the total momentum of each group is conserved to O(r/). A con- 
venient choice in this case for the limit k ' -+ k is to take k ' =  k - q  for fer- 
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mions which belong to the j = 2, 3,..., i groups. By this choice, the positions 
of i -  1 infrared phonons become unique as shown by wavy lines in Fig. 3, 
where shaded blobs represent nonsingular interactions. For a fixed set {X} 
satisfying (4.20), the contribution from graphs as shown in Fig. 3, 
WN.i({X} ), can be evaluated as follows: First consider wavy parts X 1 ~-~ Xj 
( j - -  2, 3,..., i). The infrared phonon can connect any one of fermion lines in 
the first group to any one of fermion lines in the j th  group. For a fixed per- 
mutation R, the total effect of such interactions, including terms originating 
from arbitrary number of loop integrations, can be figured out from the 
original expression for WN, (3.6) and (3.7). Intergroup interactions in the 
present situations are described by (3.7) with i and l running over the first 
group and j and m the j th  group. Since nonsingular interactions within the 
two groups are not affected by the existence of intergroup interactions of 
infrared type, the effect of intergroup interactions can be factorized out to 
be 

J (1 + %)(1 + ~*j,)- 1 Zj (k'--7~)- i~ 

where i and j, respectively, runs over the first group and the j t h  group, and 
Zj  means a summation over the j th  group. Since k ' =  k - q  except for the 
first group, 

( k ' - k )  = -qXJ (4.22) 
/ 

X~ X 2 

X3 

Fig. 3. Schematic representation of graphs which contribute to WN. ,. 
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On the other hand, to O(t/), the quantity in the parenthesis in (4.21) is 

i<j  i<j  

= ( -- iA )( - q X j U )  (4.23) 

With the use of (4.22) and (4.23), we have 

lim lim (4.21) = - N A  ( 4 . 2 4 )  
k '~k~ l~O 

Note that (4.24) is independent of the permutation R, and therefore we can 
write 

WNA{X})= (4.25) 

where W~v~i({X}) represents the contribution from shaded parts (non- 
singular interactions), and W~w ({X}) that from singular interactions. From 
(4.24) we have 

WsN, i( { X }  ) = (-NA)*-' (4.26) 

On the other hand, since the contribution of j t h  shaded-blob is given by 
inductive assumption as (XjA) xj-1 [cf. (4.18)], we have 

i 
W~vt, ( {X } )  = F[ (XjA)XJ-' (4.27) 

j = l  

Finally some combinatories to reach the quantity WN, i: For a given set 
{X}, the number of ways of choosing X1 fermions out of N fermions is 
NCxl  ; the number of ways of choosing X2 fermions out of N -  X1 fermions 
is u _ x ~ C x ~ ,  etc. Taking into account a reduction factor (i!)-1 for over- 
counting, we find the number of ways of dividing N fermions into i groups 
as 

c N , , ( { x } )  = Ncx,  x, (4.28) 

Multiplying (4.25) by (4.28) and summing over possible sets {X} gives 

N! N i -  ~ i 
= l - ] X x ,  1 

VV~N,i ( - -1 )  i - I A N - 1  Z X I l X 2 1 . . . X i  T i! j=l  
{x} �9 �9 �9 

(4.29) 
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where Z{x} means a summation over the sets {X} which satisfy (4.20). In 
the Appendix, it is proved that 4 

N! N i -- 1 i 
--1 

- - N - -  1 E XI ! i! H X f  ) - 1 -  1Ci- NN (4.30) 
{X} X 2 !  " ' '  X i !  j = l  

T h u s ,  WN, i is given by (4.18), completing the inductive proof of (4.18). 

5. FREE ENERGY 

In Section 4, we have come a rather long way to evaluate inner 
products. The remaining procedures to reach the free energy are, (A)to 
represent the quantity lira, ~ o lim~, ~ k WN = WN,1 in terms of O-phonon tree 
graphs, and (B)to perform a graphical summation of (2.16). 0-phonon tree 
graphs were first considered by Thacker in his bosonic perturbation 
theoryJ 8) Our 0-phonon tree graph below is the same as that of Thacker 
except in two points. First, the 0-phonon propagator of Thacker is 
Ao-2~6(k~), whereas ours is Aij and does not contain a &function term. 
Second, the exchange interaction is bosonic in Thacker's treatment, 
whereas it is fermionic in this paper. In this section, we shall carry out the 
two steps (A) and (B) in the above. As for the step (B), we will follow 
Thacker's arguments. 

Step (,4). A constructive definition of 0-phonon tree graphs for N 
fermions is the following: 

(i) Draw a fermion line in the left-most place of the graph. 
(ii) Draw several 0-phonons (wavy lines) which come out of the first 

fermion line, go rightward, and reach the next fermion lines which are dif- 
ferent from each other. 

(iii) Repeat the procedure (ii) until all the N fermion lines are con- 
nected. 

(iv) To N fermion lines assign N momenta k l ,  k 2 ..... k N- 

It is noted that the total number of 0-phonons is N - 1 .  We assign the 
propagator A to each 0-phonon, and therefore each 0-phonon tree graph 
has a value A N-I. Those 0-phonon trees which can be obtained from each 
other by the up-and-down of 0-phonon lines are called topologically the 
same. For example, (a) and (b) in Fig. 4 are topologically the same. 

We now claim that 

{topologically distinct 0-phonon trees} = WN, l (5.1) 
N 

4 I thank Y. Oono for carrying this out. 
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I 

2 3 

"~vx.t~ ,tx.t~/'v 

3 2 

(a) (b) 

Fig. 4. Two 0 -phonon  trees which are topolog ica l ly  the same, 

where Z:v means a summation for N fermions. This can be proved by 
induction. First it is trivially the case for N =  2. Let us assume (5.1) for N. 
For N +  1, we look at those tree graphs in which the fermion line with kt is 
in the left-most place. Let A N denote the contribution of these graphs, then 
clearly 

{topologically distinct 0-phonon trees} = ( N +  1) A N (5.2) 
U+l 

TO evaluate AN, w e  classify graphs into N groups according to the number 
of 0-phonons coming out of the left-most fermion line. Let Pi denote the 
contribution of the ith group: 

A N = P 1  + P2-F "'" -F PN (5.3) 

Pi can be evaluated as follows. First, we divide N fermions with momenta 
k2, k3,..., KN+ ~ into i groups, as shown schematically in Fig. 5, with X~, 
X2,..., Xi denoting the number of fermions in each group: 

X~ + X 2 +  " + X i = N  (5.4) 

For a fixed set {X}, there are in total 

NCxI " N_ XICX2 . . . . .  xiCx," ( i!)-* (5.5) 

ways of classifying N fermions into i groups. The reduction factor (i!) -1 
means to take only topologically distinct 0-phonon trees. Now consider the 
shaded parts. The j t h  ( j =  1,2,..., i) shaded rectangular contributes 
(XjA)Xj-1 from the inductive assumption, and therefore in total they con- 
tribute 

i 

1-I (XjA) x' ' (5.6) 
j = l  
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X I 

~ o  Xi 

Fig. 5. Schematic representation of 0-phonon tree graphs in the ith group. Shaded rec- 
tangulars represent 0-phonon trees. 

Combining (5.5) and (5.6), and taking into account A i from i 0-phonons 
which connect the left-most fermion line to the rest of the group, we have 

N! 1 ~=1 X~J-tzJN (5.7) 
Pi = ~ X1 I X2 ! ~.~j {x} �9 "" Xi! �9 = 

where Y{x} means a summation over the sets {X} which satisfy (5.4). With 
the use of (4.30), (5.7) becomes 

Pi = N _ i C i _ l  NN iAN (5.8) 

From (5.2), (5.3), and (5.8) we have 

{topologically distinct 0-phonon trees } 
N+I 

N 
= NN-iA N [ ( N +  I)A] N (5.9) (N-~-1) 2 N - l C i  1 = 

i-1 

thus completing the inductive proof of (5.1). 

Step (B). Substituting (5.1) into (2.16) gives 

F = l t N o _ L f i _  1 ~ ) N f d k l  dkjv -J-~ "" f -~n e - ~  
N--1 

x 1 , ~  {topologically distinct 0-phonon trees } (5.10) 
dV.'~ 
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We can perform a graphical summation of (5.10) following Thacker. (8) 
Here it is noted that we have ignored up to now the exchange interaction 
between fermions, which was included in the original expression (2.17). 
Therefore, (5.10) should be understood to involve exchange interactions 
also. A tricky point, however, is that this interaction works only between 
fermions with the same momentum, but no two fermions in the wave vec- 
tor {k) seem to be allowed to have the same momentum. This puzzle can 
be resolved by considering the free fermions. A demonstration of the virial 
expansion of the free energy for this simple system is found in Dashen, Ma, 
and Bernstein. (~) For a given N, one can easily show that the inner 
product due to the exchange interaction is ( - 1  ) u - l ( N _  1)!, and therefore 
(here # = 0 for simplicity), 

F= - L f i -  l ~ r dk N 2 N ~ , j ~ e  -n * ( - 1 ) N - ~  N -1 

= - L f l - l  f ~-~ln(l +e ~k~) (5.11) 

as is expected. It is now clear from (5.11) that the above puzzle is due to a 
series expansion of a logarithmic function in the virial expansion. 

Returning to (5.10), we note that the reduction factor (N!)-1 means to 
take only one of those graphs which are obtainable from each other by N! 
permutations of momenta k. Accordingly, we have a residual reduction fac- 
tor for a group of graphs which are topologically the same. In Figs. 6 and 
7, graphical representation of the integrands in (5.10) are shown for N =  2 
and 3. In these graphs, trivial momentum labels are dropped and crosses 
represent the Boltzmann factor e -r The dashed line in the second 
graph of Fig. 6 represents an exchange interaction. The factor 1/2! in the 
second graph of Fig. 7 is a residual reduction factor mentioned above. 

"V'xJ'X.rx.A I 

Fig. 6. Graphical representation of the integrand in (5.10) for N = 2. 
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Fig, 7. Graphical representation of the integrand in (5.10) for N = 3. 

We now sum up (5.10). Performing momentum integrations except for 
kl,  we have 

F=#No__Lfl_lfdk[r ) l ~ (k )  2 q _ ~ ( k )  3 . .  1 2~ - 2  - "l 

dk ( ,  

= l~No - Lfi -1 . | ~ ln[1 + ~(k)] (5 .12)  

where a one-particle distribution function, ~(k) is defined by Fig. 8. Defin- 
ing a quantity -fig(k) by Fig. 9, we have 

-fig(k) = f ~ A(k -  q)ln[1 + ((q)]  (5.13) 
zT~ 

In terms of -fig(k), 
,) , )  1 

~(k)  = e t3(k2- , ~ 0  n~' 

= e  /3[k2-- 'u + g(k)3 (5.14) 

It is seen from (5.12) and (5.14) that the interaction between fermions 
brings about only the fermion self-energy correction g(k), Substituting 
(5.14) into (5.12) and (5.13), and putting 

~(k) = k 2 - U + g(k) 

Fig. 8. 

I 

Definition of ~(k). 

(5.15) 

§ etc. 
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Fig. 9. Definition of -fig(k). 

reproduces the basic equations (2.3) and (2.5) of the BA formalism. This 
shows that the ~ function introduced by Yang and Yang represents the fer- 
mion energy at finite temperatures. 

6. C O N C L U D I N G  R E M A R K S  

In this paper, we have developed a fermionic perturbation theory for 
the statistical mechanics of the NLS model. We have understood why the 
two-body phase shift in the BA formalism should be ~ instead of the 
bosonic phase shift c~. In particular, in the present theory, the physical 
meaning of the Yang and Yang ~ function as the fermion energy, measured 
from the chemical potential, is clear. 

A question which we have left untouched concerning our fermionic 
description is that, strictly speaking, it is incorrect at the level of the 
Hamiltonian and associated energy eigenstates. To look at this, let us 
reconsider Bethe wave function (2.1) for N =  2. It is first noted that, owing 
to the singular potential, the amplitude of the Bethe wave function at 
xl = x2 plays an important role in determining the two-body phase shift & 
Strictly speaking, in (3.2) for N = 2 ,  s g n ( 0 ) = ( 1 - S 1 2 ) / ( l + g ~ 2 ) r  
Similarly, s g n ( x t - x 2 )  in (3.4) should be understood as sgn(0)= - i ,  and 
therefore q}*(x) q}*(x) r 0, that is, the field {0 is not exactly fermionic. In this 
way, the description (3.5) of the Bethe wave function in terms of a true fer- 
mion field q}, is not exactly correct. Under the same approximation as (3.5), 
the boson Hamiltonian (1.1) becomes a f ree  fermion Hamiltonian by the 
Jordan-Wigner transformation. Here it is noted that at c =  oe no two 
bosons can come to the same place, and therefore the above description in 
terms of the true fermion field q} is correct not only for the statistical 
mechanics but also at the level of the Hamiltonian and associated energy 
eigenstates. 

822/40/1-2-21 
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Now an interesting question is, if there is any soluble fermion theory 
which is equivalent to the NLS model at c r  My answer to this 
question is negative owing to the following reason. If we assume the 
existence of such a fermion theory, it should first of all be a theory of 
many-components fermions. Let us consider two components for simplicity, 
Then, nonrelativistic, 2-components, and locally interacting theory of fer- 
mions is unique. Writing two components as q~ and q~z, we have a 
Hamiltonian, 

H'= f dx[c3xq)~?xq)~ +~xq)*2C3xq)2 + Zgcp~qo~q~2q)~] (6.1) 

A corresponding Hamiltonian eigenstate should take a following form for 
two particles, 

IO(kt k 2 ) ) ' =  ;i dX1 dX'2 

where 

ei(klxl + k2x2) 

x [O(xl-x2) + Si20(x2-x~)] q)*(kl, x~)q/(k2, x2)LO) 
(6.2) 

opt(k, x) - Ckcp~(x) + Skq/2(x) (6.3) 

A simple calculation, however, shows that the two-body S matrix S'12 
determined so as to satisfy the Schr6dinger equation, 

H' I~k(kxk2))' = E I~k(klk2))' 

is different from our expectation g12. Moreover, the mixing coefficients Ck 
and Sk can be arbitrary, indicating that (6.3) has no physical significance. 
In this way, it is unlikely that there is a fermion theory which is equivalent 
to the NLS model at c r oe. 

The above argument, however, is not necessarily unfavorable to our 
fermionic treatment of the NLS model, since a relativistic version of (6.1) 
does exist as the massive Thirring model (MTM), which is known to be 
soluble by Bethe ansatz. (~3) Indeed, a system of fermions interacting via the 
two-body phase shift 3 is realized as a nonrelativistic approximation of the 
MTM: First, as a nonrelativistic approximation, we neglect negative energy 
states and associated fermion-antifermion bound states. In the resulting 
system of interacting fermions, we next take g = c ~ and the limit of fer- 
mion mass--* Go. With this procedure, the scattering phase-shift for two 
fermions (~3) becomes 5, and we reach a system of nonrelativistic fermions 
interacting via the two-body phase shift 3". 
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In brief, there does not seem to exist soluble fermion theory which is 
equivalent to the NLS model at c r ~ ,  but its relativistic version exists as 
the MTM, and a system of fermions interacting via the two-body phase 
shift 3 can be deduced from the MTM under some approximations. Thus, 
it is tempting to say that the NLS model has a deficiency that it is non- 
relativistic, and owing to this deficiency, a bosonic description is indispen- 
sable at the Hamiltonian level. 

After the completion of the present paper, I have noticed a work by 
Creamer, Thacker, and Wilkinson, (15) in which the BA thermodynamics 
result was reproduced by the quantum inverse scattering technique. I still 
believe, however, that the fermionic character of the problem can be best 
understood in the present work, 
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A P P E N D I X  

Here we prove (4.30). We write (4.30) as 

i 

2 I~ Xxj-1/(JgI!XZ!'"Xi[)=iNN-i 1/(N-i) [ ( a l )  

{x} i= 1 

It is convenient to examine generating functions instead of (A1) itself. Mul- 
tiplying (A1) by z N and operating Z~=i  give 

( ~  XX-lz:C~ ~ ~ i ( N + i - 1 )  N 2zN+i--1 

It is noted that since X! ~ X  x for large X, the radius of convergence < 1 for 
both sides of (A2). The statement (A2) can be proved by induction with 
respect to i. For i=  1, (A2) trivially holds. Assume (A2) for i. For i+  1, we 
multiply the left-hand side of (A2) with i=  1 to both sides of (A2), to 
obtain 

, -~. j =iz' z T ( T - X + i ) T  x - ' X x - '  
T = I  X = l  ( T - X ) !  X! (A3) 
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where we have changed variables from (N,X) to ( T = N + X ,  X). Thus, 
from (A2) and (A3) the statement (A2) for i+  1 would be reached if we 
could show that, for arbitrary T~> 1, 

i @ (T_X+i)T-X 1 y x  1 ( T _ ~ i ) T  2 
= ( i +  1) (A4) 

x=lZ" (T -X) !  X! ( T -  1)! 

as a function of i. This statement can be proved by induction with respect 
to T. (A4) is trivially the case for T= 1. Now assume (A4) for T, and apply 
an operator S~ di to both sides of (A4). Under this procedure, the left-hand 
side of (A4) becomes 

~ ' ( T - - X + i l T - X X  x-I  ( T + I )  r - '  
(i--1) ( T - X + I ) ! X !  T! (A5) 

X=I 

On the other hand, under the same procedure, the right of (A4) becomes 

.(T+i)T 1 ( T + l ) r - x  
z (A6) 

T! T! 

Equating (A5) to (A6) and replacing/by i+  1 in the resulting equation, we 
arrive at (A4) with T replaced by T+  1, thus completing the proof. 

REFERENCES 

1. C. N. Yang and C. P. Yang, J. Math. Phys. 10:1115 (1969). 
2. M. Takahashi and M. Suzuki, Prog. Theor. Phys, 48:2187 (1972). 
3. N. Andrei, K. Furuya, and J. H. Lowenstein, Rev. Mod. Phys., 33t (1983). 
4. M. Fowler and X. Zotos, Phys. Rev. B 25:5806 (1982); M. Fowler, Phys. Rev. B 26:2514 

(1982); X. Zotos, Phys. Rev. B 26:2519 (1982); M. Imada, K. Hida, and M. Ishikawa, 
Phys. Lett. 90A:79 (1982); K. Hida, M. Imada, and M. Ishikawa, Phys. Lett. 93A:341 
(1983). 

5. S. G. Chung, Phys. Lett. 89A:363 (1982); S. G. Chung and Y.-C. Chang, Phys. Lett. 
93.4.:230 (1983); Phys. Rev. Lett. 50:791 (1983). 

6. A. Okiji and N. Kawakami, Phys. Rev. Lett. 50:1157 (1983). 
7. S. G. Chung, Y. Oono, and Y.-C. Chang, Phys. Rev. Lett. 51:241 (1983). 
8. H. B. Thacker, Phys. Rev. D 16:2515 (1977). 
9. E. H. Lieb and W. Liniger, Phys. Rev. 130:1605 (1963). 

10. M. L. Goldberger, Phys. Fluids 2:252 (1959). 
11. R. Dashen, S. Ma, and H. J. Bernstein, Phys. Rev. 187:345 (1969). 
12. M. Girardeau, J. Math. Phys. 1:516 (1960). 
13. H. Bergknoff and H. B. Thacker, Phys. Rev. Lett. 42:135 (1979); Phys. Rev. D 19:3666 

(1979). 
14. H. B. Thacker, Rev. Mod. Phys., 253 (1981). 
15. D. B. Creamer, H. B. Thacker, and D. Wilkinson, J. Math. Phys. 22:1084 (1981). 


